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Abstract: The first stereoselective synthesis of a trans-threo-trans-threo-trans terpyrrolidine was 
achieved. A bidirectional strategy involving double acetylide coupling of two trans-N-BOC- 
pyrrolidine-aldehydes 3, epimerisation-free hydrogenation and ring closure via a seven-membered 
cyclic sulfate gives access to the terpyrrolidine scaffold. © 1997 Elsevier Science Ltd. 

Molecular recognition of  anions plays a vital role on many biochemical pathways• Several attempts have 

been made to model anion binding on the molecular level, l Towards a project involving anion recognition, we 

envisioned a stereodefined terpyrrolidine core 1 as a key unit. 2 By means of  medium and the degree of  

protonation (pH), one should influence the conformation of  I and control its binding properties. 
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A retrosynthetic analysis is shown in scheme 1: Cutting down the complexity of  the polyamine skeleton 

bearing six stereogenic centres, we were intrigued by a bidirectional acetylide coupling of  two trans- 

pyrrolidine aldehydes 3, leading to diol 2. 2 Cram addition (non-chelation control) in the formation of  2 could 
• • 4 

provide the desired erythro-stereochemlstry. Aldehyde 3 should be accessible from S-pyroglutamic acid 4. 

The synthesis o f  aldehyde 3 (scheme 2) commenced with the esterification of  4 followed by reduction of  

the resulting methyl ester to the amidoalcohol 5, 5 After O-TBDPS- and N-BOC-protection, lactam 6 could 

easily be purified by recrystallisation. Reduction with NaBH 4 then furnished the labile lactamol, which was 

directly converted to the stable N,O-acetal 7 with 2,2-dimethoxy-propane. 6 

Transforming the N,O-acetal 7 into the trans-nitrile 8 was addressed next. When we checked various 

conditions to generate and trap an acyl-iminium ion from 7 with TMSCN, no profound effect was observed of 
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Scheme 2: a) DMP/MeOH, HCI (pH 1.3), 50°C, 6h, 94%. b) NaBH4, THF/MeOH, 5°C, lh, 99%. c) TBDPSCI, Ira, DMF, 3h, 93%. 
d) BOC20, Py, 10% DMAP, CH2CI2, 18h, 92%. c) NaBH4, CH2C1JMeOH, -10°C, 2,5h, 99%. f) DMP, CH2CI ~, 1% CSA, 10min, 
95%. g) TMSCN, 1% TMSOTf, CH2C12, -35°C, 5rain, 95%. h) DIBAH, toluene/PE, -70°C, 1.5h, then tartxate buffer, 3h, 70%. 

neither the Lewis acid (SnC14, TiC14, ZnBr 2, BF3"OEt 2, TMSOTf) nor the solvent (toluene, Et20 , CH2C12) on 

the stereochemical outcome of the reaction (trans:cis=2-3:l). Best results were obtained using catalytic 

amounts of TMSOTf at -35°C, providing the easily separable nitriles 8 and 9 (76:24) in 95% combined yield. 7 

Reducing the nitrile 8 to the aldehyde 3 turned out to be complicated by severe epimerisation and 

overreduction. Optimised conditions were found when applying toluene/PE 2:1 as solvent for the DIBAH- 

reduction. Careful workup using a neutral tartrate buffer (RocheUe's salt, NH4C1, tartaric acid, pH 6.5-7) 

allowed the isolation of 3 in good yield with no epimerisation (NMR). s X-ray structure analysis confirmed its 

relative and absolute configuration. 9 As expected, the larger CH2-group (C10) was found axially oriented, due 

to Al'3-strain exerted by the planarised N-carbamate CN1-C5). 1° 

The addition of an acetylide anion was investigated next (scheme 3). Li- and Mg-reagents of TMS 

acetylene in THF or Et:O could only be applied at very low temperatures (erythro:threo=60:40), as above 

-90°C remarkable enolisation of 3 occurred. The Zn -t la and (iprO)3Ti-I lb reagents did not react at all, whereas 

the metal fragment (iPrO)2TiCl-Ilc gave the propargylic alcohols 10 and 11 (3:1) in 88% yield, but the 

sensitive aldehyde 3 epimerised moderately (8%) during the reaction. HMPT applied as cosolvent 3 gave a 3:1 

mixture in favour of 10, however, TMS migration and a lowered yield overruled its beneficial effect. Finally 

the non-basic cerium compound I td proved best in terms of total yield (95%) and reliability. 

Fortunately 10 and 11 were separable by chromatography. To overcome the neglible Cram selectivity 

(55:45), 11 was subjected to a Mitsunobu reaction. 12 Then simultaneous cleavage of the ester- and silyl-groups 

followed by TMS protection of the combined propargylic alcohols delivered the acetylene 12 in 70-75% total 

yield from 3. The relative configurations of 10 (erythro) and 11 (threo) could be unambiguously determined 

after basic cyclisation of the N-BOC amino alcohols: Their cyclic carbamates 13 and 14 had vicinal coupling 

constants of 7.9 Hz (cis) and 3.1 Hz (trans), respectively. 13 
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Scheme 3: i) CI2Ce-C-=C-TMS, THF, -85°C, 10min, 95%. j) Nal-I, THF, 45°C, 1.5h, 40%. k) K2CO 3, MeOH, 2.5h, 94%. 1) PPh3, 
pNBA, DEAD, THF, 18h, 63%. m) NaOH, THF, 0°C, 3h, 96%. n) TMSCI, NEt3, CHzCI 2, 0°C, lh, 94%. o) BuLi, THF, HMPT, 
-90°C, 3, lh, 91%. p) 5% CSA, TI-IF/M¢OH, 0°C, 10rain, 83%. q) H2, Pt (5% on C), M¢OH, 12h, 89%. r) SOCI 2, NEt3, CH2C12, 
-10°C, 15min, 98%. s) 1% RuC13, NalO4, CCIJCH3CN/H20, 0°C, 20rain, quant, t) LiN3, HMPT, lh, then THF, pH 2 (H2SO4), 2.5h, 
63%. u) MsCI, NEt3, CH2CI2, -30°C to 0°C, 2h, 97%. v) H 2, Pd (10% on C), MeOH, 0°C, 45rain, then add NaHCO3, RT, 18h, 68%. 

All experiments of coupling 12 with 3 resembled the observations made previously, but HMPT could be used 

without side reactions (erythro:threo=2:1). After flash chromatographic separation, 15 was desilylated to the 

C2-symmetrical diol 2. Attempts to hydrogenate the triple bond with Pd/H 2 lead to deoxygenated and 

epimerised products due to the slow reduction of the hindered bis-allylic intermediate. But with Pt (5% on C) 

as hydrogenation catalyst, stereochemically pure (>99%) diol 16 could be isolated in high yield, g 

With 16 at hand, the final ring closure was investigated in a variety of ways. Unfortunately protocols 

relying on the substitution of bis-sulfonates (Ts, Ms, Tf) 14 with primary amines entirely failed. Under basic 

reaction conditions elimination and intramolecular cyclisation of the BOC-group ~5 always occurred faster 

than the sterically hindered intermolecular substitution. Non-basic conditions in the substitution and leaving- 

group attachment steps seemed more promising and thus the cyclic sulfate 18 was prepared. 16 Slow addition 

(0.1eq/min) of SOC12 to a cold (-10°C) dilute solution of 16 delivered the stable cyclic sulflte 17. After its 

chromatographic purification, the RuO4 oxidation to the capricious sulfate 18 performed excellent (98%, 2 

steps). Ring opening with LiN 3 in HMPT succeeded at RT, and the resulting azido alcohol 19 was mesylated, 

followed by reduction of  the azide to the amine. The in-situ eyclisation took place despite of sterical 

hindrance, and protected terpyrrolidine 20 could be isolated in a gratifying 68% yield. The NMR spectra of 

20"H + showed a half-set of  well resolved signals reflecting its C2-symmetry, while the resonances of the 

parent amine 20 were found broadened and the spectra complicated by conformational equilibra, g 
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In s u m m a r y ,  we  have  d isc losed  the  first syn thes i s  o f  an  enant iomer ica l ly  pure  terpyrrolidine.  Readi ly  

c leaved O - T B D P S  and N - B O C  groups  offer  synthet ica l  bandwid th  towards  var ious  modif ica t ions .  Studies  are 

current ly  unde rway  incorpora t ing  this  nove l  chiral  unit  into elaborate receptors  as wel l  as inves t igat ing its 

complex ing  abili ty towards  an ions  itself. 
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